Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.
Chirality timeline
Другие языки:

    Chirality timeline

    Подписчиков: 0, рейтинг: 0

    Chirality timeline presents a timeline of landmark events that unfold the developments happened in the field of chirality.

    Many molecules come in two forms that are mirror images of each other, just like our hands. This type of molecule is called chiral. In nature, one of these forms is usually more common than the other. In our cells, one of these mirror images of a molecule fits "like a glove," while the other may be harmful.

    In nature, molecules with chirality include hormones, DNA, antibodies, and enzymes. For example, (R)-limonene smells like oranges, while (S)-limonene smells like lemons. Both molecules have the same chemical formula, but their spatial orientations are different, which makes a big difference in their biological properties. Chiral molecules in the receptors in our noses can tell the difference between these things. Chirality affects biochemical reactions, and the way a drug works depends on what kind of enantiomer it is. Many drugs are chiral and it is important that the shape of the drug matches the shape of the cell receptor it is meant to affect. Mismatching will make the drug less effective, which could be a matter of life and death, as happened with thalidomide in the 1960s.

    Pasteur and Molecular Asymmetry

    It has long been known that structural factors, particularly chirality and stereochemistry, have a big impact on pharmacological efficacy and pharmacokinetic behavior. Since more than a century ago, pertinent information pertaining to chirality has been accumulating in numerous fields, in particular, physics, chemistry and biology, at an accelerated rate, giving rise to more comprehensive and in-depth reasoning, conceptions, and ideas. This page offers a chronology of significant contributions that have been made in the journey of chirality [1809 to 2021].


    Chirality timeline

    Timeline of contributions in the field of chirality
    Year Image Name Country Contribution/Achievement Ref
    1809 Etienne-Louis Malus.jpg Étienne-Louis Malus France Discovery of plane polarized light; Origin of stereochemistry
    1811 François Arago par Ary Scheffer.jpg Dominique François Jean Arago France Showed how cut crystals change the plane of polarized light
    1812 Jean baptiste biot.jpg Jean-Baptiste Biot France Found that a quartz plate cut at a right angle to its crystal axis rotates the plane of polarized light by an angle that is proportional to the thickness of the plate. This is the phenomenon of optical rotation
    1815 Jean-Baptiste Biot France Applied these ideas to organic substances, like oil of turpentine, sugar, camphor, and tartaric acid (solutions of solids)
    1820 Eilhard Mitscherlich (cropped).jpg Eilhard Mitscherlich German Discovery of the phenomenon of crystallographic isomorphism. Correlated the similarity of crystal shapes with an analogy in chemical composition, reported that sodium ammonium salts of (+)-tartaric acid and racemic acids are completely isomorphous and are identical in all aspects except in optical activity
    1848 Louis Pasteur, foto av Paul Nadar, Crisco edit.jpg Louis Pasteur France The racemic sodium ammonium salt of tartaric acid was crystallized, and two different types of crystals were found. First, enantiomers were physically separated
    1857 Louis Pasteur France Made the first observation of enantioselectivity in living things
    1874 Jacobus van 't Hoff by Perscheid 1904.jpg Jacobus Henricus van't Hoff Netherlands Outlined the connection between a molecule's three-dimensional structure, its optical activity, and the idea of asymmetric carbon. Proposed a stereochemical theory of isomerism based on the three-dimensional structure of molecules. Van't Hoff, who won the first Nobel Prize in Chemistry in 1901, for discovery of the laws of chemical dynamics and osmotic pressure in solutions"
    1874 Joseph Achille Le Bel. Photograph. Wellcome V0028156.jpg Joseph Achille Le Bel France Used asymmetry arguments and talked about the asymmetry of the molecules as a whole instead of the asymmetry of each carbon atom. Le Bel's thought could be considered as the general theory of stereoisomerism.
    1875 Jacobus Henricus van't Hoff Netherlands Predicted allenes' stereoisomerism, but it wasn't seen in the lab until 1935
    1890 Emil Fischer - Vorlesung Berlin.jpg Hermann Emil Louis Fischer German Imagined the fit between the enzyme and the substrate as a lock and key mechanism. He made Fischer projections to show their three-dimensional structures. He was awarded the second Nobel Prize in chemistry, 1902 "in recognition of the extraordinary services he has rendered by his work on sugar and purine syntheses.".
    1890 Poulson Contributions to the knowledge of the pharmacological group of cocaine
    1894 Ehrlich  and Einhorn. Physiological and toxicological significance of chiral compounds; found (+)-cocaine was more active, started working faster, and lasted less time than (-)-cocaine.
    1903 Portrait of Arthur Cushny Wellcome M0015995.jpg Arthur Robertson Cushny United Kingdom Described how atropine and (-)-hyoscyamine work differently on the papillary, cardiac, and salivary systems and how they affect the spinal cord of a frog; First, gave clear examples of how the biological activity of two enantiomers of a chiral molecule can be different.
    1904 Pictet. and Rotschy Described the differences in nicotine isomers' toxic doses
    1904 Portrait of William Thomson, Baron Kelvin.jpg William Thomson British The term "chiral" was first used and introduced. Later, Lord Kelvin was made a peer.
    1908 Abderhalden. and Müller Described (-)- and (+)-epinephrine have very different effects on blood pressure.
    1910 Grove Nicotine isomers have different levels of toxicity.
    1918 Frey Reported the isomer of quinine - quinidine,to be more effective in treating dysrhythmias.
    1933 Easson and Stedman Advanced a thee-point attachment model to explain chiral recognition process between the drug (with a single center of asymmetry) and the receptor or enzyme active site
    1957

    1958

    Lancelot Law Whyte Scotland Rediscovered term chiral ,
    1965 Kurt Martin Mislow United States Firmly reintroduced the term chirality into stereochemical  literature; German-born American organic chemist
    1956/1966 Robert Sidney Cahn British Devised  R/S and E/Z notations; Cahn–Ingold–Prelog priority rules
    1956/1966 Christopher Kelk Ingold British Co-author of Cahn–Ingold–Prelog priority rules; Did groundbreaking work (between 1920-30s) on reaction mechanisms and the electronic structure of organic compounds
    1956/1966 Vladimir Prelog ETH-Bib Portr 00214.jpg Vladimir Prelog Sarajevo Co-author of the Cahn–Ingold–Prelog priority rules
    1975 Vladimir Prelog Sarajevo Nobel prize in chemistry for his research into the stereochemistry of organic molecules and reaction
    1975 John Cornforth 1975.jpg John Cornforth Australia Awarded Nobel prize for his work on the stereochemistry of enzyme-catalyzed reactions
    2001 William Standish Knowles United States Won Nobel prize in chemistry in 2001 for his work on the development of catalytic asymmetric synthesis (chirally catalyzed hydrogenation reactions
    2001 Rioji Noyori.jpg Ryōji Noyori Japan Won Nobel prize in chemistry in 2001 for his work on the development of catalytic asymmetric synthesis (chirally catalyzed hydrogenation reactions)
    2001 Barry Sharpless 02.jpg Karl Barry Sharpless United States Won Nobel prize in chemistry in 2001 for his work on the development of catalytic asymmetric synthesis (chirally catalyzed oxidation reactions)
    2021 Empfang für Benjamin List im Rathaus Köln-7597-crop.jpg Benjamin List German Awarded  Nobel Prize in Chemistry in 2021 for his work on the development of asymmetric organocatalysis
    2021 David MacMillan.jpg David MacMillan United Kingdom United States Awarded  Nobel Prize in Chemistry in 2021 for his work on the development of asymmetric organocatalysis

    See also

    External links


    Новое сообщение