Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.
Alcuronium chloride
Clinical data | |
---|---|
Trade names | Alloferin |
Other names | Ro 4-3816, diallylnortoxiferine |
AHFS/Drugs.com | International Drug Names |
ATC code | |
Pharmacokinetic data | |
Metabolism | not metabolized |
Elimination half-life | 2–4 hours |
Excretion | 70–90% unchanged in urine 1.3 mL/kg/min |
Identifiers | |
| |
CAS Number | |
PubChem CID | |
IUPHAR/BPS | |
ChemSpider |
|
UNII | |
ChEBI | |
CompTox Dashboard (EPA) | |
ECHA InfoCard | 100.035.648 |
Chemical and physical data | |
Formula | C44H50N4O2+2 |
Molar mass | 666.910 g·mol−1 |
3D model (JSmol) | |
| |
| |
NY (what is this?) (verify) |
Alcuronium chloride (formerly marketed as Alloferin) is a neuromuscular blocking (NMB) agent, alternatively referred to as a skeletal muscle relaxant. It is a semi-synthetic substance prepared from C-toxiferine I, a bis-quaternary alkaloid obtained from Strychnos toxifera. C-toxiferine I itself has been tested for its pharmacological action and noted to be a very long acting neuromuscular blocking agent For a formal definition of the durations of actions associated with NMB agents, see page for gantacurium. The replacement of both the N-methyl groups with N-allyl moieties yielded N,N-diallyl-bis-nortoxiferine, now recognized as alcuronium.
Inclusion of the allylic functions presented an enhanced potential area of biotransformation, and thus alcuronium is observed to have a much shorter duration of neuromuscular blocking action than its parent C-toxiferine I. It also has a more rapid onset of action, and is ~1.5 times as potent as tubocurarine. The pharmacological action of alcuronium is readily reversed by neostigmine, and it produces little histamine release. The major disadvantage of alcuronium is that it elicits a vagolytic effect produced by a selective atropine-like blockade of cardiac muscarinic receptors.
Effects
- Cardiovascular system: histamine release and blockage of the sympathetic ganglia including adrenal medulla could cause hypotension
- Respiratory system: apnea due to phrenic blockage but bronchoconstriction can occur from the histamine release
- Central nervous system: no effect on intraocular pressure
- Autonomic ganglion blockade can cause a decrease in gut motility
Special points
- Duration of action prolonged in states of low potassium, calcium and protein, also in states of high magnesium and acidosis.
- Pharmaceutically incompatible with thiopentone
- Infusion can cause fixed dilated pupils
See also
Further reading
- Zahn K, Eckstein N, Tränkle C, Sadée W, Mohr K (2002). "Allosteric modulation of muscarinic receptor signaling: alcuronium-induced conversion of pilocarpine from an agonist into an antagonist". J Pharmacol Exp Ther. 301 (2): 720–8. doi:10.1124/jpet.301.2.720. PMID 11961078. S2CID 534003.
- Maass A, Mohr K (1996). "Opposite effects of alcuronium on agonist and on antagonist binding to muscarinic receptors". Eur J Pharmacol. 305 (1–3): 231–4. doi:10.1016/0014-2999(96)00240-3. PMID 8813558.
- Jakubík J, Tucek S (1994). "Protection by alcuronium of muscarinic receptors against chemical inactivation and location of the allosteric binding site for alcuronium". J Neurochem. 63 (5): 1932–40. doi:10.1046/j.1471-4159.1994.63051932.x. PMID 7931349. S2CID 23053191.
- Proska J, Tucek S (1994). "Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors". Mol Pharmacol. 45 (4): 709–17. PMID 8183250.
nAChRs |
|
||||
---|---|---|---|---|---|
Precursors (and prodrugs) |
|||||