Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.
Kabsch algorithm
Другие языки:

    Kabsch algorithm

    Подписчиков: 0, рейтинг: 0

    The Kabsch algorithm, also known as the Kabsch-Umeyama algorithm, named after Wolfgang Kabsch and Shinji Umeyama, is a method for calculating the optimal rotation matrix that minimizes the RMSD (root mean squared deviation) between two paired sets of points. It is useful for point-set registration in computer graphics, and in cheminformatics and bioinformatics to compare molecular and protein structures (in particular, see root-mean-square deviation (bioinformatics)).

    The algorithm only computes the rotation matrix, but it also requires the computation of a translation vector. When both the translation and rotation are actually performed, the algorithm is sometimes called partial Procrustes superimposition (see also orthogonal Procrustes problem).

    Description

    The algorithm for the rotation of P into Q starts with two sets of paired points, P and Q. Each set of points can be represented as an N × 3 matrix. The first row is the coordinates of the first point, the second row is the coordinates of the second point, the Nth row is the coordinates of the Nth point. Check the matrix below

    The algorithm works in three steps: a translation, the computation of a covariance matrix, and the computation of the optimal rotation matrix.

    Translation

    Both sets of coordinates must be translated first, so that their centroid coincides with the origin of the coordinate system. This is done by subtracting from the point coordinates of the respective centroid.

    Computation of the covariance matrix

    The second step consists of calculating a matrix H. In matrix notation,

    or, using summation notation,

    which is a cross-covariance matrix when P and Q are seen as data matrices.

    Computation of the optimal rotation matrix

    It is possible to calculate the optimal rotation R based on the matrix formula

    but implementing a numerical solution to this formula becomes complicated when all special cases are accounted for (for example, the case of H not having an inverse).

    If singular value decomposition (SVD) routines are available, the optimal rotation, R, can be calculated using the following simple algorithm.

    First, calculate the SVD of the covariance matrix H.

    Next, decide whether we need to correct our rotation matrix to ensure a right-handed coordinate system

    Finally, calculate our optimal rotation matrix, R, as

    The optimal rotation matrix can also be expressed in terms of quaternions. This alternative description has been used in the development of a rigorous method for removing rigid-body motions from molecular dynamics trajectories of flexible molecules. In 2002 a generalization for the application to probability distributions (continuous or not) was also proposed.

    Generalizations

    The algorithm was described for points in a three-dimensional space. The generalization to D dimensions is immediate.

    External links

    This SVD algorithm is described in more detail at http://cnx.org/content/m11608/latest/

    A Matlab function is available at http://www.mathworks.com/matlabcentral/fileexchange/25746-kabsch-algorithm

    A C++ implementation (and unit test) using Eigen

    A Python script is available at https://github.com/charnley/rmsd. Another implementation can be found in SciPy.

    A free PyMol plugin easily implementing Kabsch is [1]. (This previously linked to CEalign [2], but this uses the Combinatorial Extension (CE) algorithm.) VMD uses the Kabsch algorithm for its alignment.

    The FoldX modeling toolsuite incorporates the Kabsch algorithm to measure RMSD between Wild Type and Mutated protein structures.

    See also


    Новое сообщение