Мы используем файлы cookie.
Продолжая использовать сайт, вы даете свое согласие на работу с этими файлами.

Eukaryote

Подписчиков: 0, рейтинг: 0

Eukaryota
Temporal range: RhyacianPresent
Scientific classification e
Domain: Eukaryota
(Chatton, 1925) Whittaker & Margulis, 1978
Supergroups and kingdoms
Synonyms

Eukaryota, whose members are known as eukaryotes (/jˈkærits, -əts/), is a diverse domain of organisms whose cells have a nucleus. All animals, plants, fungi, and many unicellular organisms are eukaryotes. They constitute a major group of living things, along with the two groups of prokaryotes, the Bacteria and the Archaea.

The eukaryotes emerged in the Archaea, possibly within the Asgard archaea. This implies that there are only two domains of life, Bacteria and Archaea, with eukaryotes incorporated among the Archaea. Eukaryotes represent a small minority of the number of organisms, but, due to their generally much larger size, their collective global biomass is about equal to that of prokaryotes. Eukaryotes emerged approximately 2.2 billion years ago, during the Proterozoic eon, likely as flagellated cells. These were created by symbiogenesis between an anaerobic Asgard archaean and an aerobic proteobacterium, which formed the mitochondria. A second episode of symbiogenesis with a cyanobacterium created the plants, with chloroplasts. The oldest known eukaryote fossils, multicellular planktonic organisms belonging to the Gabonionta, were discovered in Gabon in 2023, dating back to 2.1 billion years ago.

Eukaryotic cells contain membrane-bound organelles such as the nucleus, the endoplasmic reticulum, and the Golgi apparatus. Eukaryotes may be either unicellular or multicellular. In comparison, prokaryotes are typically unicellular. Unicellular eukaryotes are sometimes called protists. Eukaryotes can reproduce both asexually through mitosis and sexually through meiosis and gamete fusion.

As organisms

Overview

Eukaryotes are organisms that range from microscopic single cells, such as picozoans under 3 micrometres across, to animals like the blue whale, weighing up to 190 tonnes and measuring up to 33.6 metres (110 ft) long, or plants like the coast redwood, up to 120 metres (390 ft) tall. Many eukaryotes are unicellular; the informal grouping called protists includes many of these, with some multicellular forms like the giant kelp up to 200 feet (61 m) long. The multicellular eukaryotes include the animals, plants, and fungi, but again, these groups too contain many unicellular species. Eukaryotic cells are typically much larger than those of prokaryotes – the bacteria and the archaea – having a volume of around 10,000 times greater. Eukaryotes represent a small minority of the number of organisms, but, as many of them are much larger, their collective global biomass is about equal to that of prokaryotes.

The eukaryotes are a diverse lineage, consisting mainly of microscopic organisms. Multicellularity in some form has evolved independently at least 25 times within the eukaryotes. Complex multicellular organisms, not counting the aggregation of amoebae to form slime molds, have evolved within only six eukaryotic lineages: animals, symbiomycotan fungi, brown algae, red algae, green algae, and land plants. Eukaryotes are grouped by genomic similarities, so that groups often lack visible shared characteristics.

Distinguishing features

Nucleus

The defining feature of eukaryotes is that their cells have a nucleus. This gives them their name, from the Greek εὖ (eu, "well" or "good") and κάρυον (karyon, "nut" or "kernel", here meaning "nucleus"). Eukaryotic cells have a variety of internal membrane-bound structures, called organelles, and a cytoskeleton which defines the cell's organization and shape. The nucleus stores the cell's DNA, which is divided into linear bundles called chromosomes; these are separated into two matching sets by a microtubular spindle during nuclear division, in the distinctively eukaryotic process of mitosis.

Biochemistry

Eukaryotes differ from prokaryotes in multiple ways, with unique biochemical pathways such as sterane synthesis. The eukaryotic signature proteins have no homology to proteins in other domains of life, but appear to be universal among eukaryotes. They include the proteins of the cytoskeleton, the complex transcription machinery, the membrane-sorting systems, the nuclear pore, and some enzymes in the biochemical pathways.

Internal membranes

Prokaryote, to same scale
Eukaryotic cell with endomembrane system
Eukaryotic cells are some 10,000 times larger than prokaryotic cells by volume, and contain membrane-bound organelles.

Eukaryote cells include a variety of membrane-bound structures, together forming the endomembrane system. Simple compartments, called vesicles and vacuoles, can form by budding off other membranes. Many cells ingest food and other materials through a process of endocytosis, where the outer membrane invaginates and then pinches off to form a vesicle. Some cell products can leave in a vesicle through exocytosis.

The nucleus is surrounded by a double membrane known as the nuclear envelope, with nuclear pores that allow material to move in and out. Various tube- and sheet-like extensions of the nuclear membrane form the endoplasmic reticulum, which is involved in protein transport and maturation. It includes the rough endoplasmic reticulum where ribosomes are attached to synthesize proteins, which enter the interior space or lumen. Subsequently, they generally enter vesicles, which bud off from the smooth endoplasmic reticulum. In most eukaryotes, these protein-carrying vesicles are released and further modified in stacks of flattened vesicles (cisternae), the Golgi apparatus.

Vesicles may be specialized; for instance, lysosomes contain digestive enzymes that break down biomolecules in the cytoplasm.

Mitochondria

Mitochondria are essentially universal in the eukaryotes, and with their own DNA somewhat resemble prokaryotic cells.

Mitochondria are organelles found in all but one eukaryote, Monocercomonoides, which has secondarily lost its mitochondria. The mitochondrion is commonly called "the powerhouse of the cell", for its function providing energy by oxidising sugars or fats to produce the energy store ATP. Mitochondria have two surrounding membranes, each a phospholipid bi-layer; the inner of which is folded into invaginations called cristae where aerobic respiration takes place.

Mitochondria contain their own DNA, which has close structural similarities to bacterial DNA, and which encodes rRNA and tRNA genes that produce RNA which is closer in structure to bacterial RNA than to eukaryote RNA.

Some eukaryotes, such as the metamonads such as Giardia and Trichomonas, and the amoebozoan Pelomyxa, appear to lack mitochondria, but all have been found to contain mitochondrion-derived organelles, such as hydrogenosomes and mitosomes, and thus have lost their mitochondria secondarily. They obtain energy by enzymatic action on nutrients absorbed from the environment. The metamonad Monocercomonoides has also acquired, by lateral gene transfer, a cytosolic sulfur mobilization system which provides the clusters of iron and sulfur required for protein synthesis. The normal mitochondrial iron-sulfur cluster pathway has been lost secondarily.

Plastids

The most common type of plastid is the chloroplast, which contains chlorophyll and produces organic compounds by photosynthesis.

Plants and various groups of algae have plastids as well as mitochondria. Plastids, like mitochondria, have their own DNA and are developed from endosymbionts, in this case cyanobacteria. They usually take the form of chloroplasts which, like cyanobacteria, contain chlorophyll and produce organic compounds (such as glucose) through photosynthesis. Others are involved in storing food. Although plastids probably had a single origin, not all plastid-containing groups are closely related. Instead, some eukaryotes have obtained them from others through secondary endosymbiosis or ingestion. The capture and sequestering of photosynthetic cells and chloroplasts, kleptoplasty, occurs in many types of modern eukaryotic organisms.

Cytoskeletal structures

The cytoskeleton. Actin filaments are shown in red, microtubules in green. (The nucleus is in blue.)

Many eukaryotes have long slender motile cytoplasmic projections, called flagella, or multiple shorter structures called cilia. These organelles are variously involved in movement, feeding, and sensation. They are composed mainly of tubulin, and are entirely distinct from prokaryotic flagella. They are supported by a bundle of microtubules arising from a centriole, characteristically arranged as nine doublets surrounding two singlets. Flagella may have hairs (mastigonemes), as in many Stramenopiles. Their interior is continuous with the cell's cytoplasm.

Microfilamental structures composed of actin and actin-binding proteins, including α-actinin, fimbrin, and filamin are present in submembranous cortical layers and bundles, as well. Motor proteins of microtubules, dynein and kinesin, and myosin of actin filaments, provide dynamic character of the network.

Centrioles are often present even in cells and groups that do not have flagella, but conifers and flowering plants have neither. They generally occur in groups that give rise to various microtubular roots. These form a primary component of the cytoskeletal structure, and are often assembled over the course of several cell divisions, with one flagellum retained from the parent and the other derived from it. Centrioles produce the spindle during nuclear division.

Cell wall

The cells of plants and algae, fungi and most chromalveolates, but not animals, have a cell wall, a layer outside the cell membrane, providing the cell with structural support, protection, and a filtering mechanism. The cell wall also prevents over-expansion when water enters the cell.

The major polysaccharides making up the primary cell wall of land plants are cellulose, hemicellulose, and pectin. The cellulose microfibrils are linked via hemicellulosic tethers to form the cellulose-hemicellulose network, which is embedded in the pectin matrix. The most common hemicellulose in the primary cell wall is xyloglucan.

Sexual reproduction

Sexual reproduction requires a life cycle that alternates between a haploid phase, with one copy of each chromosome in the cell, and a diploid phase, with two copies. In eukaryotes, haploid gametes are produced by meiosis; two gametes fuse to form a diploid zygote.

Eukaryotes have a life cycle that involves sexual reproduction, alternating between a haploid phase, where only one copy of each chromosome is present in each cell and a diploid phase, with two copies of each chromosome in each cell. The diploid phase is formed by fusion of two haploid gametes, such as eggs and spermatozoa, to form a zygote; this may grow into a body, with its cells dividing by mitosis, and at some stage produce haploid gametes through meiosis, a division that reduces the number of chromosomes and creates genetic variability. There is considerable variation in this pattern. Plants have both haploid and diploid multicellular phases. Eukaryotes have lower metabolic rates and longer generation times than prokaryotes, because they are larger and therefore have a smaller surface area to volume ratio.

The evolution of sexual reproduction may be a primordial characteristic of eukaryotes. Based on a phylogenetic analysis, Dacks and Roger have proposed that facultative sex was present in the group's common ancestor. A core set of genes that function in meiosis is present in both Trichomonas vaginalis and Giardia intestinalis, two organisms previously thought to be asexual. Since these two species are descendants of lineages that diverged early from the eukaryotic evolutionary tree, core meiotic genes, and hence sex, were likely present in the common ancestor of eukaryotes. Species once thought to be asexual, such as Leishmania parasites, have a sexual cycle. Amoebae, previously regarded as asexual, are anciently sexual; present-day asexual groups likely arose recently.

Evolution

History of classification

In antiquity, the two lineages of animals and plants were recognized by Aristotle and Theophrastus. The lineages were given the taxonomic rank of Kingdom by Linnaeus in the 18th century. Though he included the fungi with plants with some reservations, it was later realized that they are quite distinct and warrant a separate kingdom. The various single-cell eukaryotes were originally placed with plants or animals when they became known. In 1818, the German biologist Georg A. Goldfuss coined the word protozoa to refer to organisms such as ciliates, and this group was expanded until Ernst Haeckel made it a kingdom encompassing all single-celled eukaryotes, the Protista, in 1866. The eukaryotes thus came to be seen as four kingdoms:

The protists were at that time thought to be "primitive forms", and thus an evolutionary grade, united by their primitive unicellular nature. The disentanglement of the deep splits in the tree of life only really started with DNA sequencing, leading to a system of domains rather than kingdoms as top level rank being put forward by Carl Woese, Otto Kandler, and Mark Wheelis in 1990, uniting all the eukaryote kingdoms in the domain "Eucarya", stating however that "'eukaryotes' will continue to be an acceptable common synonym". In 1996, the evolutionary biologist Lynn Margulis proposed to replace Kingdoms and Domains with "inclusive" names to create a "symbiosis-based phylogeny", giving the description "Eukarya (symbiosis-derived nucleated organisms)".

Phylogeny

By 2014, a rough consensus started to emerge from the phylogenomic studies of the previous two decades. The majority of eukaryotes can be placed in one of two large clades dubbed Amorphea (similar in composition to the unikont hypothesis) and the Diphoda (formerly bikonts), which includes plants and most algal lineages. A third major grouping, the Excavata, has been abandoned as a formal group as it is paraphyletic. The proposed phylogeny below includes only one group of excavates (Discoba), and incorporates the recent proposal that picozoans are close relatives of rhodophytes. The Provora are a group of microbial predators discovered in 2022. The Metamonada have been hard to place, being sister possibly to Discoba, possibly to Malawimonada.

Eukaryotes
Diphoda
Diaphoretickes

Cryptista Rhodomonas salina CCMP 322.jpg

Archaeplastida
Rhodophyta (red algae)

Bangia.jpg

1600 mya
Picozoa

Picomonas judraskeda (SEM).png

Glaucophyta

Glaucocystis sp.jpg

1100 mya
Viridiplantae (plants)

Pediastrum (cropped).jpg

1000 mya
1600 mya

Haptista Acanthocystis labeled Picture1.1.png

TSAR

Telonemia Telonema rivulare (electron micrography).jpg

SAR
Halvaria

Stramenopiles Ochromonas.png Gemeiner Blasentang.jpg

Alveolata Ceratium furca.jpg

Rhizaria

Ammonia tepida.jpg

550 mya

Provora Outline drawing of Ubysseya fretuma.svg

Hemimastigophora Hemimastix amphikineta.png

Discoba (Excavata) Euglena mutabilis - 400x - 1 (10388739803) (cropped).jpg

? Metamonada Giardia lamblia.jpg

Bikonts

Ancyromonadida Ancyromonas.png

Malawimonada Malawimonas.jpg

CRuMs

Collodictyon pseudopodoa (extracted).jpg

Amorphea
Amoebozoa

Chaos carolinensis Wilson 1900.jpg

Obazoa

Breviatea Mastigamoeba invertens (extracted).jpg

Apusomonadida Podomonas kaiyoae C.jpg

Opisthokonta
Holomycota (inc. fungi)

Asco1013.jpg

Holozoa (inc. animals)

Comb jelly.jpg

1100 mya
1300 mya
1500 mya
2200 mya?

Origin of eukaryotes

In the theory of symbiogenesis, a merger of an archaean and an aerobic bacterium created the eukaryotes, with aerobic mitochondria; a second merger added chloroplasts, creating the green plants.

The origin of the eukaryotic cell, also known as eukaryogenesis, is a milestone in the evolution of life, since eukaryotes include all complex cells and almost all multicellular organisms. The last eukaryotic common ancestor (LECA) is the hypothetical origin of all living eukaryotes, and was most likely a biological population. It is believed to have been a protist with a nucleus, at least one centriole and flagellum, facultatively aerobic mitochondria, sex (meiosis and syngamy), a dormant cyst with a cell wall of chitin and/or cellulose and peroxisomes.

An endosymbiotic union between a motile anaerobic archaean and an aerobic alphaproteobacterium gave rise to eukaryotes, with mitochondria. A second endosymbiosis with a cyanobacterium gave rise to the ancestor of plants, with chloroplasts.

Fossils

The timing of the origin of eukaryotes is hard to determine; Knoll (2006) suggests they developed as much as 2.2 billion years ago. Some acritarchs are known from at least 1.65 billion years ago, and the possible alga Grypania has been found as far back as 2.1 billion years ago. The "problematic" fossil Diskagma has been found in paleosols 2.2 billion years old.

Reconstruction of Diskagma buttonii, a terrestrial fossil less than 1mm high, from rocks 2.2 billion years old

Organized living structures described as "large colonial organisms" have been found in the black shales of the Palaeoproterozoic Francevillian B Formation, in Gabon, dated at 2.1 billion years old. Eukaryotic life could have evolved at that time. Fossils that are clearly related to modern groups start appearing an estimated 1.2 billion years ago, in the form of red algae, though recent work suggests the existence of fossilized filamentous algae in the Vindhya basin dating back perhaps to 1.6 to 1.7 billion years ago.

The presence of steranes, eukaryotic-specific biomarkers, in Australian shales previously indicated that eukaryotes were present in these rocks dated at 2.7 billion years old, but these Archaean biomarkers have been rebutted as later contaminants. The oldest valid biomarker records are only around 800 million years old. In contrast, a molecular clock analysis suggests the emergence of sterol biosynthesis as early as 2.3 billion years ago. The nature of steranes as eukaryotic biomarkers is further complicated by the production of sterols by some bacteria.

Whenever their origins, eukaryotes may not have become ecologically dominant until much later; a massive increase in the zinc composition of marine sediments 800 million years ago has been attributed to the rise of substantial populations of eukaryotes, which preferentially consume and incorporate zinc relative to prokaryotes, approximately a billion years after their origin (at the latest).

See also

External links


Новое сообщение